美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区

產(chǎn)品分類(lèi)

當(dāng)前位置: 首頁(yè) > 工業(yè)電氣產(chǎn)品 > 端子與連接器 > 線路板連接器 > FFC連接器

類(lèi)型分類(lèi):
科普知識(shí)
數(shù)據(jù)分類(lèi):
FFC連接器

Case Temperature versus Ambient Temperature

發(fā)布日期:2022-04-17 點(diǎn)擊率:64

       
When you wish to control the temperature of a device, ambiguity regarding what constitutes the ambient temperature of a system can lead to inaccuracy of the derating curve. Measuring case temperature rather than ambient can simplify and increase the accuracy of the thermal testing procedure.

Ambient temperature is a term which refers to the temperature in a room, or the temperature which surrounds an object under discussion. For electronic components, ambient temperature along with power dissipation in nearby components and the components' own power dissipation represent the main source of temperature extremes. Temperature extremes can damage components and should be avoided where possible. Unfortunately, it is often the case that limiting the ambient temperature is not possible due to the specific application in which the device is being used. The only available option to the end system designer becomes limiting the power dissipation of the components of the device itself. This is achieved by limiting the current flowing through these components (effectively lowering the supplies power limit) in applications that have high ambient temperatures. This lowering of the power limit is known as “derating”, and is usually specified in datasheets using a “derating curve” (see Figure 1).

Derating Curve

Figure 1: Derating curve.


Figure 1 shows the derating curves for the Xgen power supply. Taking the XCC/XCV model operating at 230 Vac as an example, the power supply is rated to output 1000 watts from 0°C to 45°C ambient. Then from 45°C to 70°C, the power supply is then linearly derated to 600 watts. The power supply is not rated for operation at ambient temperatures higher than 70°C. If the power supply is operated within these limits, any harmful thermal conditions are avoided. However, the accuracy of the derating curve is limited by the accuracy of the ambient temperature measurement, and this raises a number of issues, which will be discussed in the next section.

Ambient temperature measurement

As seen in the previous section, the ambient temperature is used as the base temperature for derating curve specifications. Unfortunately, the term ambient temperature has become quite ambiguous. Following are a number of interpretations of the term “ambient temperature”, illustrated in Figure 2.

Ambient test points

Figure 2: Ambient test points.

  1. The temperature of the immediate environment, unaffected by the temperature rise of the power supply itself. This is measured at either a distance from the power supply itself, or before the supply is turned on.

  2. The temperature of the air inside the power supply itself (measured far enough away from any components so to not be affected by the temperature of the components themselves).

  3. The temperature of the air flowing directly over the components.

  4. The temperature of the board or chassis of the system (which is considered to never rise above a certain maximum temperature).

  5. The temperature entering or exiting the power supply.

  6. The temperature of the immediate environment during a bench test.

  7. The temperature setting of the oven during elevated temperature tests.

  8. The temperature that a system is preheated to prior to an operational test.

A system designer will generally use interpretations 2, 4, or 5, as this would be the temperature they have experienced from previous systems and will ultimately be able to measure on the system in the field. A system test engineer will probably use interpretations 6, 7, or 8, since the temperature will need to be controlled in their testing scenarios. A component supplier will probably use interpretations 1 or 3, which would be used in component modeling. This confusion of what exactly constitutes the ambient temperature of a system means that the calculation of a component’s predicted temperature can be quite inaccurate. To avoid this disparity, it is necessary to carefully define where and how the ambient temperature measurement is taken.

Inaccuracy of the derating curve due to ambiguity in the ambient measurement is also compounded by the fact that there can be other elements in the system which can affect the temperature of the components, while ambient conditions remain constant. These include such elements as device orientation, how the device is mounted during operation (e.g. whether attached to metal, wood, surface area exposed to air etc.), and restriction of airflow.

Case temperature measurement

An alternative to measuring the ambient temperature and using a derating curve is to get closer to the components themselves, in effect narrowing the scope of the system being tested. This can be achieved by measuring case temperature.

Measuring case temperature rather than ambient temperature means that many external influences (such as orientation, mounting, etc.) can be ignored as they are now outside the scope of the thermal test. We can now define a maximum case temperature that will ensure that the internal components do not experience dangerous temperature levels.

Also, measuring case temperature allows for a specific location on the case to be designated as a test point, which means that unlike ambient measurement, there is little confusion when it comes to thermal testing in the field.

Essentially, by measuring case temperature rather than ambient, we are simplifying and increasing the accuracy of the thermal testing procedure. Rather than measuring ambient conditions and attempting to work backwards to calculate how close to a maximum safe temperature the internal components may get, we define a maximum safe temperature for the test device itself, and treat it as we would any component, and ensure that it operates within this well-defined operating parameter.

References

  1. “Why Ambient Temperature Matters” Matt Romig,
    http://www.eetimes.com/design/power-management-design/4206513/What-is-ambient-temperature--anyway--and-why-does-it-matter-.

  2. “Xgen Designers Manual”, Excelsys Technologies,
    http://www.excelsys.com/technical-support/designer-manual.

下一篇: PLC、DCS、FCS三大控

上一篇: Energy Measurement I

推薦產(chǎn)品

更多
美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区


        久久久蜜桃精品| 国产天堂亚洲国产碰碰| 麻豆av一区二区| 美国av一区二区三区| 欧美日韩精品免费观看视一区二区 | 亚洲一区二区精品久久av| 亚洲码国产岛国毛片在线| 亚洲精品国产一区二区三区四区在线| 亚洲精品久久7777| 免费成人av在线| 懂色av一区二区在线播放| 成人一区在线看| 国产精品久久精品国产 | 在线成人免费视频| 欧美大片在线观看一区| 国产精品对白交换视频| 亚洲综合久久av| 久久99精品一区二区三区| 成人美女视频在线观看18| 国产精品视频入口| 自拍亚洲欧美老师丝袜| 日韩一区二区三区精品视频 | 国产日韩欧美不卡在线| 亚洲人成网站在线| 国内精品不卡在线| 国产成人精品亚洲777人妖| 91视频国产资源| 色一情一乱一伦一区二区三区| 日本精品一级二级| 亚洲精品一区二区三区四区高清| 亚洲视频中文字幕| 国产真实乱子伦精品视频| 成人动漫视频在线观看免费| 亚洲精品国产一区| 精品国产免费久久| 亚洲va国产天堂va久久en| 国产成人超碰人人澡人人澡| 久久99精品久久久久久青青日本| 在线视频中文字幕一区二区| 欧美激情一区在线观看| 日韩一级在线观看| 亚洲人成在线观看一区二区| 另类欧美日韩国产在线| 国产精品免费一区二区三区四区| 色999日韩国产欧美一区二区| 日韩精品在线看片z| 亚洲狠狠丁香婷婷综合久久久| 国产成人精品综合在线观看| 日韩一区免费观看| 久久精品夜色噜噜亚洲aⅴ| 秋霞成人午夜伦在线观看| 91麻豆免费看片| 欧美日韩亚洲丝袜制服| 亚洲欧美日韩成人高清在线一区| 国产成人精品网址| 91国在线观看| 亚洲精品日产精品乱码不卡| 国产91精品免费| 色天天综合色天天久久| 国产精品久久毛片av大全日韩| 国产一区二区在线看| 亚洲国产一区二区精品视频 | 久久99精品久久久久久| 精品久久久久久亚洲| 欧美一区日韩一区| 天堂久久久久va久久久久| 精品国产一区二区三| 久久综合中文字幕| 国产精品资源在线观看| 色狠狠综合天天综合综合| 玉足女爽爽91| 国产日韩欧美一区二区| 精品久久久久久久一区二区蜜臀| 黑人精品欧美一区二区蜜桃| 亚洲精品乱码久久久久久蜜桃91 | 日韩精品免费视频人成| 欧美日韩在线观看一区| 国产情人综合久久777777| 国产成人在线电影| 欧美日本精品一区二区三区| 亚洲成人一区在线| 欧美日韩一区二区三区在线观看免| 久久九九影视网| 成人av在线播放网址| 6080亚洲精品一区二区| 久久99深爱久久99精品| 在线免费av一区| 蜜臀av亚洲一区中文字幕| 一本一道久久a久久精品综合| 亚洲日本免费电影| 久热这里只精品99re8久| 国产精品久久久久一区| 国产乱子伦精品| 国产精品高潮呻吟| 精品欧美一区二区久久久伦| 国产精品午夜在线| 狠狠色噜噜狠狠狠狠色吗综合| 久久精品人人做| 官网99热精品| 国产精品进线69影院| 精品一区二区国产| 亚洲精品免费电影| 日韩经典在线视频| 日本少妇一区二区| 欧美日韩国产另类不卡| 国产精品亚洲一区二区三区在线 | 日韩在线卡一卡二| 色婷婷激情综合| 国内精品免费在线观看| 91麻豆精品国产91久久久| 国产激情91久久精品导航| 日韩免费成人网| 99久久精品99国产精品| 国产视频一区二区在线观看| 国产精品三区www17con| 亚洲免费观看高清完整版在线| 欧美精品v日韩精品v国产精品| 亚洲午夜精品在线| 91电影在线观看| 国产成人免费网站| 国产精品网站在线观看| 欧美一级日本a级v片| 日韩影院免费视频| 欧美一区二区三区四区在线观看| 波多野洁衣一区| 一区免费观看视频| 综合视频免费看| 国产剧情一区二区| 国产欧美精品一区aⅴ影院| 日本在线播放一区| 精品一区二区三区香蕉蜜桃| 日韩欧美高清一区| 久久手机视频| 久久99热这里只有精品| 久久久久久电影| 日韩欧美一区二区三区四区| 激情亚洲综合在线| 欧美经典一区二区| 一区二区三区四区国产| 国产精品77777竹菊影视小说| 国产精品网站在线播放| 色悠悠久久综合| 99久久久免费精品国产一区二区| 一区二区三区日本| 欧美日韩国产首页在线观看| 国产精品10p综合二区| 午夜av一区二区三区| 欧美大片国产精品| 午夜精品一区二区在线观看的| 国产原创一区二区三区| 中文字幕一区在线| 91.麻豆视频| 欧美激情导航| 成人av在线播放网站| 亚洲高清免费视频| 久久综合九色综合97_久久久| 视频一区国产精品| 99久久精品免费观看| 日本免费在线视频不卡一不卡二| 久久只精品国产| 伊人情人网综合| 国产精品日韩一区二区三区 | 一区二区三区在线看| 欧美一级日韩一级| 五码日韩精品一区二区三区视频| 国产suv精品一区二区883| 亚洲国产综合在线| 国产欧美日韩在线观看| 欧美日本高清视频在线观看| 欧美大香线蕉线伊人久久国产精品| 国产精品一级在线| 亚洲成人你懂的| 亚洲天堂a在线| 日韩久久久精品| 色吧成人激情小说| 日韩欧美精品一区二区| 国产精品日韩二区| 丁香桃色午夜亚洲一区二区三区| 三级久久三级久久| 亚洲精品视频一区| 久久老女人爱爱| 欧美高清视频不卡网| 婷婷精品国产一区二区三区日韩| 99久久免费国| 成人激情免费视频| 黄色资源网久久资源365| 香蕉久久夜色精品国产使用方法| 国产精品美女一区二区在线观看| 日韩一区二区三区高清免费看看 | 日韩一区在线免费观看| 久久综合丝袜日本网| 欧美丰满嫩嫩电影| 日本韩国欧美三级| 亚洲精品无人区| 国产一区福利视频| 91亚洲精华国产精华精华液| 成人一道本在线| 成人综合婷婷国产精品久久 | 4438成人网| 欧美福利视频导航|