美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区

產(chǎn)品分類

當(dāng)前位置: 首頁 > 工業(yè)電氣產(chǎn)品 > 工業(yè)繼電器 > 舌簧繼電器

類型分類:
科普知識
數(shù)據(jù)分類:
舌簧繼電器

PWM技術(shù)實現(xiàn)方法綜述

發(fā)布日期:2022-04-26 點擊率:106

<script var cpro_id = "u1457042";

<iframe id="iframeu1457042_0" rcmm?rdid=1457042&dc=2&di=u1457042&dri=0&dis=0&dai=3&ps=425x362&dcb=BAIDU_SSP_define&dtm=BAIDU_DUP_SETJSONADSLOT&dvi=0.0&dci=-1&dpt=none&tsr=0&tpr=1459711792655&ti=PWM%E6%8A%80%E6%9C%AF%E5%AE%9E%E7%8E%B0%E6%96%B9%E6%B3%95%E7%BB%BC%E8%BF%B0_%E7%94%B5%E6%B0%94%E8%87%AA%E5%8A%A8%E5%8C%96%E6%8A%80%E6%9C%AF%E7%BD%91&ari=1&dbv=0&drs=1&pcs=645x335&pss=970x426&cfv=0&cpl=22&chi=50&cce=true&cec=gbk&tlm=1402381654&ltu=http%3A%2F%2Fwww.dqjsw.com.cn%2Fdiangongdianzi%2Fdianlidiangong%2F1553.html&ecd=1&psr=1366x768&par=1366x728&pis=-1x-1&ccd=24&cja=false&cmi=34&col=zh-CN&cdo=-1&tcn=1459711793&qn=da5c2ec15d5dfacf&tt=1459711792619.176.231.231" vspace="0" hspace="0" marginwidth="0" marginheight="0" scrolling="no" style="border:0; vertical-align:bottom;margin:0;" allowtransparency="true" align="center,center" width="200" height="200" frameborder="0">

引言

 

  采樣控制理論中有一個重要結(jié)論:沖量相等而形狀不同的窄脈沖加在具有慣性的環(huán)節(jié)上時,其效果基本相同。PWM控制技術(shù)就是以該結(jié)論為理論基礎(chǔ),對半導(dǎo)體開關(guān)器件的導(dǎo)通和關(guān)斷進(jìn)行控制,使輸出端得到一系列幅值相等而寬度不相等的脈沖,用這些脈沖來代替正弦波或其他所需要的波形。按一定的規(guī)則對各脈沖的寬度進(jìn)行調(diào)制,既可改變逆變電路輸出電壓的大小,也可改變輸出頻率。

  PWM控制的基本原理很早就已經(jīng)提出,但是受電力電子器件發(fā)展水平的制約,在上世紀(jì)80年代以前一直未能實現(xiàn)。直到進(jìn)入上世紀(jì)80年代,隨著全控型電力電子器件的出現(xiàn)和迅速發(fā)展,PWM控制技術(shù)才真正得到應(yīng)用。隨著電力電子技術(shù)、微電子技術(shù)和自動控制技術(shù)的發(fā)展以及各種新的理論方法,如現(xiàn)代控制理論、非線性系統(tǒng)控制思想的應(yīng)用,PWM控制技術(shù)獲得了空前的發(fā)展。到目前為止,已出現(xiàn)了多種PWM控制技術(shù),根據(jù)PWM控制技術(shù)的特點,到目前為止主要有以下8類方法。

  1  相電壓控制PWM

  1.1  等脈寬PWM法[1>

  VVVF(Variable Voltage Variable Frequency)裝置在早期是采用PAM(Pulse Amplitude Modulation)控制技術(shù)來實現(xiàn)的,其逆變器部分只能輸出頻率可調(diào)的方波電壓而不能調(diào)壓。等脈寬PWM法正是為了克服PAM法的這個缺點發(fā)展而來的,是PWM法中最為簡單的一種。它是把每一脈沖的寬度均相等的脈沖列作為PWM波,通過改變脈沖列的周期可以調(diào)頻,改變脈沖的寬度或占空比可以調(diào)壓,采用適當(dāng)控制方法即可使電壓與頻率協(xié)調(diào)變化。相對于PAM法,該方法的優(yōu)點是簡化了電路結(jié)構(gòu),提高了輸入端的功率因數(shù),但同時也存在輸出電壓中除基波外,還包含較大的諧波分量。

  1.2  隨機(jī)PWM

  在上世紀(jì)70年代開始至上世紀(jì)80年代初,由于當(dāng)時大功率晶體管主要為雙極性達(dá)林頓三極管,載波頻率一般不超過5kHz,電機(jī)繞組的電磁噪音及諧波造成的振動引起了人們的關(guān)注。為求得改善,隨機(jī)PWM方法應(yīng)運而生。其原理是隨機(jī)改變開關(guān)頻率使電機(jī)電磁噪音近似為限帶白噪聲(在線性頻率坐標(biāo)系中,各頻率能量分布是均勻的),盡管噪音的總分貝數(shù)未變,但以固定開關(guān)頻率為特征的有色噪音強(qiáng)度大大削弱。正因為如此,即使在IGBT已被廣泛應(yīng)用的今天,對于載波頻率必須限制在較低頻率的場合,隨機(jī)PWM仍然有其特殊的價值;另一方面則說明了消除機(jī)械和電磁噪音的最佳方法不是盲目地提高工作頻率,隨機(jī)PWM技術(shù)正是提供了一個分析、解決這種問題的全新思路。

  1.3  SPWM法

  SPWM(Sinusoidal PWM)法是一種比較成熟的、目前使用較廣泛的PWM法。前面提到的采樣控制理論中的一個重要結(jié)論:沖量相等而形狀不同的窄脈沖加在具有慣性的環(huán)節(jié)上時,其效果基本相同。SPWM法就是以該結(jié)論為理論基礎(chǔ),用脈沖寬度按正弦規(guī)律變化而和正弦波等效的PWM波形即SPWM波形控制逆變電路中開關(guān)器件的通斷,使其輸出的脈沖電壓的面積與所希望輸出的正弦波在相應(yīng)區(qū)間內(nèi)的面積相等,通過改變調(diào)制波的頻率和幅值則可調(diào)節(jié)逆變電路輸出電壓的頻率和幅值。該方法的實現(xiàn)有以下幾種方案。

  1.3.1  等面積法

  該方案實際上就是SPWM法原理的直接闡釋,用同樣數(shù)量的等幅而不等寬的矩形脈沖序列代替正弦波,然后計算各脈沖的寬度和間隔,并把這些數(shù)據(jù)存于微機(jī)中,通過查表的方式生成PWM信號控制開關(guān)器件的通斷,以達(dá)到預(yù)期的目的。由于此方法是以SPWM控制的基本原理為出發(fā)點,可以準(zhǔn)確地計算出各開關(guān)器件的通斷時刻,其所得的的波形很接近正弦波,但其存在計算繁瑣,數(shù)據(jù)占用內(nèi)存大,不能實時控制的缺點。

  1.3.2  硬件調(diào)制法

  硬件調(diào)制法是為解決等面積法計算繁瑣的缺點而提出的,其原理就是把所希望的波形作為調(diào)制信號,把接受調(diào)制的信號作為載波,通過對載波的調(diào)制得到所期望的PWM波形。通常采用等腰三角波作為載波,當(dāng)調(diào)制信號波為正弦波時,所得到的就是SPWM波形。其實現(xiàn)方法簡單,可以用模擬電路構(gòu)成三角波載波和正弦調(diào)制波發(fā)生電路,用比較器來確定它們的交點,在交點時刻對開關(guān)器件的通斷進(jìn)行控制,就可以生成SPWM波。但是,這種模擬電路結(jié)構(gòu)復(fù)雜,難以實現(xiàn)精確的控制。

  1.3.3  軟件生成法

  由于微機(jī)技術(shù)的發(fā)展使得用軟件生成SPWM波形變得比較容易,因此,軟件生成法也就應(yīng)運而生。軟件生成法其實就是用軟件來實現(xiàn)調(diào)制的方法,其有兩種基本算法,即自然采樣法和規(guī)則采樣法。

  1.3.3.1  自然采樣法[2>

  以正弦波為調(diào)制波,等腰三角波為載波進(jìn)行比較,在兩個波形的自然交點時刻控制開關(guān)器件的通斷,這就是自然采樣法。其優(yōu)點是所得SPWM波形最接近正弦波,但由于三角波與正弦波交點有任意性,脈沖中心在一個周期內(nèi)不等距,從而脈寬表達(dá)式是一個超越方程,計算繁瑣,難以實時控制。

  1.3.3.2  規(guī)則采樣法[3>

  規(guī)則采樣法是一種應(yīng)用較廣的工程實用方法,一般采用三角波作為載波。其原理就是用三角波對正弦波進(jìn)行采樣得到階梯波,再以階梯波與三角波的交點時刻控制開關(guān)器件的通斷,從而實現(xiàn)SPWM法。當(dāng)三角波只在其頂點(或底點)位置對正弦波進(jìn)行采樣時,由階梯波與三角波的交點所確定的脈寬,在一個載波周期(即采樣周期)內(nèi)的位置是對稱的,這種方法稱為對稱規(guī)則采樣。當(dāng)三角波既在其頂點又在底點時刻對正弦波進(jìn)行采樣時,由階梯波與三角波的交點所確定的脈寬,在一個載波周期(此時為采樣周期的兩倍)內(nèi)的位置一般并不對稱,這種方法稱為非對稱規(guī)則采樣。

  規(guī)則采樣法是對自然采樣法的改進(jìn),其主要優(yōu)點就是是計算簡單,便于在線實時運算,其中非對稱規(guī)則采樣法因階數(shù)多而更接近正弦。其缺點是直流電壓利用率較低,線性控制范圍較小。

  以上兩種方法均只適用于同步調(diào)制方式中。

  1.3.4  低次諧波消去法[2>

  低次諧波消去法是以消去PWM波形中某些主要的低次諧波為目的的方法。其原理是對輸出電壓波形按傅氏級數(shù)展開,表示為u(ωt)=ansinnωt,首先確定基波分量a1的值,再令兩個不同的an=0,就可以建立三個方程,聯(lián)立求解得a1,a2及a3,這樣就可以消去兩個頻率的諧波。

  該方法雖然可以很好地消除所指定的低次諧波,但是,剩余未消去的較低次諧波的幅值可能會相當(dāng)大,而且同樣存在計算復(fù)雜的缺點。該方法同樣只適用于同步調(diào)制方式中。

  1.4  梯形波與三角波比較法[2>

  前面所介紹的各種方法主要是以輸出波形盡量接近正弦波為目的,從而忽視了直流電壓的利用率,如SPWM法,其直流電壓利用率僅為86.6%。因此,為了提高直流電壓利用率,提出了一種新的方法——梯形波與三角波比較法。該方法是采用梯形波作為調(diào)制信號,三角波為載波,且使兩波幅值相等,以兩波的交點時刻控制開關(guān)器件的通斷實現(xiàn)PWM控制。

  由于當(dāng)梯形波幅值和三角波幅值相等時,其所含的基波分量幅值已超過了三角波幅值,從而可以有效地提高直流電壓利用率。但由于梯形波本身含有低次諧波,所以輸出波形中含有5次、7次等低次諧波。

  2  線電壓控制PWM

  前面所介紹的各種PWM控制方法用于三相逆變電路時,都是對三相輸出相電壓分別進(jìn)行控制的,使其輸出接近正弦波,但是,對于像三相異步電動機(jī)這樣的三相無中線對稱負(fù)載,逆變器輸出不必追求相電壓接近正弦,而可著眼于使線電壓趨于正弦。因此,提出了線電壓控制PWM,主要有以下兩種方法。

  2.1  馬鞍形波與三角波比較法

  馬鞍形波與三角波比較法也就是諧波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次諧波,調(diào)制信號便呈現(xiàn)出馬鞍形,而且幅值明顯降低,于是在調(diào)制信號的幅值不超過載波幅值的情況下,可以使基波幅值超過三角波幅值,提高了直流電壓利用率。在三相無中線系統(tǒng)中,由于三次諧波電流無通路,所以三個線電壓和線電流中均不含三次諧波[4>。

  除了可以注入三次諧波以外,還可以注入其他3倍頻于正弦波信號的其他波形,這些信號都不會影響線電壓。這是因為,經(jīng)過PWM調(diào)制后逆變電路輸出的相電壓也必然包含相應(yīng)的3倍頻于正弦波信號的諧波,但在合成線電壓時,各相電壓中的這些諧波將互相抵消,從而使線電壓仍為正弦波。

  2.2  單元脈寬調(diào)制法[5>

  因為,三相對稱線電壓有Uuv+Uvw+Uwu=0的關(guān)系,所以,某一線電壓任何時刻都等于另外兩個線電壓負(fù)值之和。現(xiàn)在把一個周期等分為6個區(qū)間,每區(qū)間60°,對于某一線電壓例如Uuv,半個周期兩邊60°區(qū)間用Uuv本身表示,中間60°區(qū)間用-(Uvw+Uwu)表示,當(dāng)將Uvw和Uwu作同樣處理時,就可以得到三相線電壓波形只有半周內(nèi)兩邊60°區(qū)間的兩種波形形狀,并且有正有負(fù)。把這樣的電壓波形作為脈寬調(diào)制的參考信號,載波仍用三角波,并把各區(qū)間的曲線用直線近似(實踐表明,這樣做引起的誤差不大,完全可行),就可以得到線電壓的脈沖波形,該波形是完全對稱,且規(guī)律性很強(qiáng),負(fù)半周是正半周相應(yīng)脈沖列的反相,因此,只要半個周期兩邊60°區(qū)間的脈沖列一經(jīng)確定,線電壓的調(diào)制脈沖波形就唯一地確定了。這個脈沖并不是開關(guān)器件的驅(qū)動脈沖信號,但由于已知三相線電壓的脈沖工作模式,就可以確定開關(guān)器件的驅(qū)動脈沖信號了。

  該方法不僅能抑制較多的低次諧波,還可減小開關(guān)損耗和加寬線性控制區(qū),同時還能帶來用微機(jī)控制的方便,但該方法只適用于異步電動機(jī),應(yīng)用范圍較小。

  3  電流控制PWM

  電流控制PWM的基本思想是把希望輸出的電流波形作為指令信號,把實際的電流波形作為反饋信號,通過兩者瞬時值的比較來決定各開關(guān)器件的通斷,使實際輸出隨指令信號的改變而改變。其實現(xiàn)方案主要有以下3種。

  3.1  滯環(huán)比較法[4>

  這是一種帶反饋的PWM控制方式,即每相電流反饋回來與電流給定值經(jīng)滯環(huán)比較器,得出相應(yīng)橋臂開關(guān)器件的開關(guān)狀態(tài),使得實際電流跟蹤給定電流的變化。該方法的優(yōu)點是電路簡單,動態(tài)性能好,輸出電壓不含特定頻率的諧波分量。其缺點是開關(guān)頻率不固定造成較為嚴(yán)重的噪音,和其他方法相比,在同一開關(guān)頻率下輸出電流中所含的諧波較多。

  3.2  三角波比較法[2>

  該方法與SPWM法中的三角波比較方式不同,這里是把指令電流與實際輸出電流進(jìn)行比較,求出偏差電流,通過放大器放大后再和三角波進(jìn)行比較,產(chǎn)生PWM波。此時開關(guān)頻率一定,因而克服了滯環(huán)比較法頻率不固定的缺點。但是,這種方式電流響應(yīng)不如滯環(huán)比較法快。

  3.3  預(yù)測電流控制法[6>

  預(yù)測電流控制是在每個調(diào)節(jié)周期開始時,根據(jù)實際電流誤差,負(fù)載參數(shù)及其它負(fù)載變量,來預(yù)測電流誤差矢量趨勢,因此,下一個調(diào)節(jié)周期由PWM產(chǎn)生的電壓矢量必將減小所預(yù)測的誤差。該方法的優(yōu)點是,若給調(diào)節(jié)器除誤差外更多的信息,則可獲得比較快速、準(zhǔn)確的響應(yīng)。目前,這類調(diào)節(jié)器的局限性是響應(yīng)速度及過程模型系數(shù)參數(shù)的準(zhǔn)確性。

  4  空間電壓矢量控制PWM[7>

  空間電壓矢量控制PWM(SVPWM)也叫磁通正弦PWM法。它以三相波形整體生成效果為前提,以逼近電機(jī)氣隙的理想圓形旋轉(zhuǎn)磁場軌跡為目的,用逆變器不同的開關(guān)模式所產(chǎn)生的實際磁通去逼近基準(zhǔn)圓磁通,由它們的比較結(jié)果決定逆變器的開關(guān),形成PWM波形。此法從電動機(jī)的角度出發(fā),把逆變器和電機(jī)看作一個整體,以內(nèi)切多邊形逼近圓的方式進(jìn)行控制,使電機(jī)獲得幅值恒定的圓形磁場(正弦磁通)。

  具體方法又分為磁通開環(huán)式和磁通閉環(huán)式。磁通開環(huán)法用兩個非零矢量和一個零矢量合成一個等效的電壓矢量,若采樣時間足夠小,可合成任意電壓矢量。此法輸出電壓比正弦波調(diào)制時提高15%,諧波電流有效值之和接近最小。磁通閉環(huán)式引入磁通反饋,控制磁通的大小和變化的速度。在比較估算磁通和給定磁通后,根據(jù)誤差決定產(chǎn)生下一個電壓矢量,形成PWM波形。這種方法克服了磁通開環(huán)法的不足,解決了電機(jī)低速時,定子電阻影響大的問題,減小了電機(jī)的脈動和噪音。但由于未引入轉(zhuǎn)矩的調(diào)節(jié),系統(tǒng)性能沒有得到根本性的改善。

  5  矢量控制PWM[8>

  矢量控制也稱磁場定向控制,其原理是將異步電動機(jī)在三相坐標(biāo)系下的定子電流Ia,Ib及Ic,通過三相/二相變換,等效成兩相靜止坐標(biāo)系下的交流電流Ia1及Ib1,再通過按轉(zhuǎn)子磁場定向旋轉(zhuǎn)變換,等效成同步旋轉(zhuǎn)坐標(biāo)系下的直流電流Im1及It1(Im1相當(dāng)于直流電動機(jī)的勵磁電流;It1相當(dāng)于與轉(zhuǎn)矩成正比的電樞電流),然后模仿對直流電動機(jī)的控制方法,實現(xiàn)對交流電動機(jī)的控制。其實質(zhì)是將交流電動機(jī)等效為直流電動機(jī),分別對速度、磁場兩個分量進(jìn)行獨立控制。通過控制轉(zhuǎn)子磁鏈,然后分解定子電流而獲得轉(zhuǎn)矩和磁場兩個分量,經(jīng)坐標(biāo)變換,實現(xiàn)正交或解耦控制。

  但是,由于轉(zhuǎn)子磁鏈難以準(zhǔn)確觀測,以及矢量變換的復(fù)雜性,使得實際控制效果往往難以達(dá)到理論分析的效果,這是矢量控制技術(shù)在實踐上的不足。此外.它必須直接或間接地得到轉(zhuǎn)子磁鏈在空間上的位置才能實現(xiàn)定子電流解耦控制,在這種矢量控制系統(tǒng)中需要配置轉(zhuǎn)子位置或速度傳感器,這顯然給許多應(yīng)用場合帶來不便。

  6  直接轉(zhuǎn)矩控制PWM[8>

  1985年德國魯爾大學(xué)Depenbrock教授首先提出直接轉(zhuǎn)矩控制理論(Direct Torque Control簡稱DTC)。直接轉(zhuǎn)矩控制與矢量控制不同,它不是通過控制電流、磁鏈等量來間接控制轉(zhuǎn)矩,而是把轉(zhuǎn)矩直接作為被控量來控制,它也不需要解耦電機(jī)模型,而是在靜止的坐標(biāo)系中計算電機(jī)磁通和轉(zhuǎn)矩的實際值,然后,經(jīng)磁鏈和轉(zhuǎn)矩的Band-Band控制產(chǎn)生PWM信號對逆變器的開關(guān)狀態(tài)進(jìn)行最佳控制,從而在很大程度上解決了上述矢量控制的不足,能方便地實現(xiàn)無速度傳感器化,有很快的轉(zhuǎn)矩響應(yīng)速度和很高的速度及轉(zhuǎn)矩控制精度,并以新穎的控制思想、簡潔明了的系統(tǒng)結(jié)構(gòu)、優(yōu)良的動靜態(tài)性能得到了迅速發(fā)展。

  但直接轉(zhuǎn)矩控制也存在缺點,如逆變器開關(guān)頻率的提高有限制。

  7  非線性控制PWM

  單周控制法[7>又稱積分復(fù)位控制(Integration Reset Control,簡稱IRC),是一種新型非線性控制技術(shù),其基本思想是控制開關(guān)占空比,在每個周期使開關(guān)變量的平均值與控制參考電壓相等或成一定比例。該技術(shù)同時具有調(diào)制和控制的雙重性,通過復(fù)位開關(guān)、積分器、觸發(fā)電路、比較器達(dá)到跟蹤指令信號的目的。單周控制器由控制器、比較器、積分器及時鐘組成,其中控制器可以是RS觸發(fā)器,其控制原理如圖1所示。圖中K可以是任何物理開關(guān),也可是其它可轉(zhuǎn)化為開關(guān)變量形式的抽象信號。

單周控制在控制電路中不需要誤差綜合,它能在一個周期內(nèi)自動消除穩(wěn)態(tài)、瞬態(tài)誤差,使前一周期的誤差不會帶到下一周期。雖然硬件電路較復(fù)雜,但其克服了傳統(tǒng)的PWM控制方法的不足,適用于各種脈寬調(diào)制軟開關(guān)逆變器,具有反應(yīng)快、開關(guān)頻率恒定、魯棒性強(qiáng)等優(yōu)點,此外,單周控制還能優(yōu)化系統(tǒng)響應(yīng)、減小畸變和抑制電源干擾,是一種很有前途的控制方法。

  8  諧振軟開關(guān)PWM

  傳統(tǒng)的PWM逆變電路中,電力電子開關(guān)器件硬開關(guān)的工作方式,大的開關(guān)電壓電流應(yīng)力以及高的du/dt和di/dt限制了開關(guān)器件工作頻率的提高,而高頻化是電力電子主要發(fā)展趨勢之一,它能使變換器體積減小、重量減輕、成本下降、性能提高,特別當(dāng)開關(guān)頻率在18kHz以上時,噪聲將已超過人類聽覺范圍,使無噪聲傳動系統(tǒng)成為可能。

  諧振軟開關(guān)PWM的基本思想是在常規(guī)PWM變換器拓?fù)涞幕A(chǔ)上,附加一個諧振網(wǎng)絡(luò),諧振網(wǎng)絡(luò)一般由諧振電感、諧振電容和功率開關(guān)組成。開關(guān)轉(zhuǎn)換時,諧振網(wǎng)絡(luò)工作使電力電子器件在開關(guān)點上實現(xiàn)軟開關(guān)過程,諧振過程極短,基本不影響PWM技術(shù)的實現(xiàn)。從而既保持了PWM技術(shù)的特點,又實現(xiàn)了軟開關(guān)技術(shù)。但由于諧振網(wǎng)絡(luò)在電路中的存在必然會產(chǎn)生諧振損耗,并使電路受固有問題的影響,從而限制了該方法的應(yīng)用。

  9  結(jié)語

  本文較詳細(xì)地總結(jié)了各種PWM控制方法的原理,并簡單說明了各種方法的優(yōu)缺點。PWM控制技術(shù)以其控制簡單、靈活和動態(tài)響應(yīng)好的優(yōu)點而成為電力電子技術(shù)最廣泛應(yīng)用的控制方式,也是人們研究的熱點。由于當(dāng)今科學(xué)技術(shù)的發(fā)展已經(jīng)沒有了學(xué)科之間的界限,結(jié)合現(xiàn)代控制理論思想或?qū)崿F(xiàn)無諧振軟開關(guān)技術(shù)將會成為PWM控制技術(shù)發(fā)展的主要方向之一。

下一篇: PLC、DCS、FCS三大控

上一篇: 索爾維全系列Solef?PV

推薦產(chǎn)品

更多
美女网站一区二区_在线观看日韩毛片_成人在线视频首页_欧美精品一区二区三区久久久_国产精品亚洲一区二区三区在线_日本免费新一区视频_日本美女一区二区三区_精品亚洲成a人_久久不见久久见免费视频1_91首页免费视频_欧美一区二区在线看_91精品91久久久中77777_天堂蜜桃一区二区三区_av在线一区二区_欧美不卡一区二区_欧美影视一区二区三区


        国产精品国产三级国产aⅴ入口| 日韩综合在线视频| 国产精品久久三区| 奇米精品一区二区三区在线观看| 岛国av在线一区| 欧美一区二区三区四区五区六区 | 2014亚洲精品| 色悠久久久久综合欧美99| 久久九九全国免费| 日本系列欧美系列| 国产伦精品一区二区三区视频孕妇 | 久久久久99精品一区| 日韩在线一二三区| 国产精品一区二区三区在线| 欧美日韩成人一区二区| 一区二区三区.www| 99re6在线| 欧美一区二区三区小说| 婷婷亚洲久悠悠色悠在线播放| 99久久精品免费看国产一区二区三区| 在线观看网站黄不卡| 亚洲视频免费在线| 91在线小视频| 欧美一区二区三区啪啪| 视频一区欧美日韩| 欧美不卡福利| 中文字幕乱码一区二区免费| 福利一区在线观看| 欧美三区在线视频| 视频一区二区三区入口| 欧美在线视频一区二区三区| 中文字幕第一区第二区| 91丝袜美女网| 26uuu久久综合| 成人毛片在线观看| 欧美一卡二卡在线| 国产美女久久久久| 欧美午夜精品一区二区三区| 日韩精品一级二级 | 欧美日韩一二三区| 免费观看在线色综合| 中国成人亚色综合网站| 亚洲777理论| 天堂√在线观看一区二区| 亚洲人成网站色在线观看| 不卡一区二区三区视频| 久久久精品综合| 91美女片黄在线观看91美女| 久久欧美中文字幕| 91免费版pro下载短视频| 精品sm在线观看| 97se亚洲国产综合自在线观| 久久久三级国产网站| 99在线免费观看视频| 中文字幕av一区二区三区免费看| 91麻豆6部合集magnet| 久久精品欧美日韩| 国产精品免费观看高清| 国产精品免费免费| 欧美成人蜜桃| 亚洲国产成人tv| 一区二区精品视频| 精品一区二区三区香蕉蜜桃| 4438成人网| 成人免费高清视频在线观看| 久久综合九色综合97婷婷| 91免费视频观看| 国产精品初高中害羞小美女文| 老牛影视免费一区二区| 一区二区三区加勒比av| 亚洲一区三区在线观看| 精品一区二区综合| 日韩一区二区三区av| 3d蒂法精品啪啪一区二区免费| 国产精品女上位| 亚洲国产另类久久久精品极度| 全国精品久久少妇| 欧美精品久久天天躁| 91网站视频在线观看| 中文字幕巨乱亚洲| 亚洲国产精品一区二区第一页 | 国产麻豆成人传媒免费观看| 欧美成人一区二区三区在线观看| 动漫美女被爆操久久久| 亚洲黄色小视频| 欧美视频中文字幕| 97精品久久久午夜一区二区三区 | 蜜臀久久久久久久| 欧美精品久久久久久久多人混战| 99精品视频在线观看免费| 亚洲视频一二区| 在线观看不卡视频| 99久久综合精品| 一区二区三区日韩欧美精品| 欧美色区777第一页| 99久热re在线精品视频| 亚洲国产wwwccc36天堂| 欧美电影一区二区三区| 国产精品日韩一区二区免费视频| 亚洲一区成人在线| 日韩一区二区精品葵司在线| 精品国产一区二区三区麻豆免费观看完整版 | 97超碰欧美中文字幕| 一级日本不卡的影视| 欧美精品自拍偷拍| 好吊色欧美一区二区三区| 日本亚洲视频在线| 久久久久久久电影| 一区高清视频| 99三级在线| 久久国产尿小便嘘嘘尿| 亚洲国产精品成人综合色在线婷婷| 一区二区国产日产| 99se婷婷在线视频观看| 麻豆精品精品国产自在97香蕉 | 99久久99久久| 免费视频最近日韩| 国产精品久久久99| 欧美日本不卡视频| 九九九九九九精品| 国产精品综合av一区二区国产馆| 亚洲女同ⅹxx女同tv| 日韩一二三区视频| 一级二级三级欧美| 国产精品久久久久久久小唯西川| 麻豆一区二区三区| 中文字幕字幕中文在线中不卡视频| 在线成人高清不卡| 一区二区三区三区在线| 国产在线资源一区| 国产精品亚洲第一| 亚洲自拍与偷拍| 国产亚洲精品久| 欧美日韩国产天堂| 视频一区国产精品| 99re在线国产| 国产精品1区2区3区| 美日韩一区二区| 亚洲视频精选在线| 国产亚洲精品超碰| 日韩三级中文字幕| 欧洲国内综合视频| 性欧美精品一区二区三区在线播放 | 国产精品久久久久久久久久久久冷| 国产综合色产在线精品| 无吗不卡中文字幕| 亚洲日本va在线观看| 亚洲精品一线二线三线无人区| 欧美午夜免费电影| 永久久久久久| 日本在线高清视频一区| 精品久久久久久综合日本| 99精品视频中文字幕| 国产精品自拍一区| 九九在线精品视频| 日产欧产美韩系列久久99| 一区二区三区日韩欧美精品 | 91精品国自产在线观看 | 色哟哟欧美精品| 欧美一区二区在线| 极品尤物一区二区三区| 91网站在线观看视频| 成人免费视频一区二区| 国产麻豆欧美日韩一区| 蜜臀av在线播放一区二区三区| 一区av在线播放| 亚洲综合无码一区二区| 亚洲精品国产一区二区精华液| 亚洲图片另类小说| 亚洲婷婷综合久久一本伊一区| 欧美国产激情一区二区三区蜜月| 久久婷婷国产综合精品青草| 2021国产精品久久精品| 精品国产精品网麻豆系列| 欧美二区乱c少妇| 538prom精品视频线放| 在线综合视频播放| 欧美一区二区三区视频免费| 91精品免费观看| 日韩小视频在线观看专区| 国产91精品露脸国语对白| 色视频一区二区三区| av资源站一区| 欧美嫩在线观看| 久久久婷婷一区二区三区不卡| 7777精品久久久大香线蕉| 欧美影视一区在线| 欧美日韩一区二区三区视频| 欧美三级电影精品| 欧美精品tushy高清| 日韩一区二区电影| 久久夜色精品国产噜噜av| 久久久99精品免费观看| 欧美激情一二三区| 18欧美乱大交hd1984| 一区二区三区.www| 蜜桃视频一区二区三区| 国内一区二区视频| 国产成人8x视频一区二区| 97国产一区二区|